Oe Historical|2 Article(s)
History, current developments, and future directions of near-field optical science
Motoichi Ohtsu
This paper reviews the science of the optical near-field (ONF), which is created and localized in a nanometer-sized material (NM) or on its surface. It is pointed out that work on near-field optics was started in order to break through the diffraction limit in optical microscopy and had already come to an end without giving answers to the essential questions on the origin of the near-field optical interaction. However, recent studies have reincarnated these studies and identified the ONF as an off-shell quantum field. Based on this identification, a novel science called off-shell science has started on the basis that the dispersion relation between energy and momentum is invalid for the ONF. This quantum field is called the dressed photon because it is created as a result of the interaction between photons and electrons (or excitons) in a NM and, thus, it accompanies the energies of electrons or excitons. In reviewing current developments, this paper presents fifteen novel phenomena that are contrary to the common views in conventional optical science. Novel technologies developed by applying these phenomena are also reviewed. These include: nanometer-sized optical devices, nano-fabrication technology, and energy conversion technology. High-power Si light emitting diodes, Si lasers, and SiC polarization rotators are reviewed as examples of electrical to optical energy conversion. For future directions, this paper also reviews novel theoretical studies that have commenced recently by relying on physical and mathematical bases.
Opto-Electronic Advances
  • Publication Date: Mar. 20, 2020
  • Vol. 3, Issue 3, 190046-1 (2020)
Silicon photonics for telecom and data-com applications
Kiyosh Asakawa, Yoshimasa Sugimoto, and Shigeru Nakamura
In recent decades, silicon photonics has attracted much attention in telecom and data-com areas. Constituted of high refractive-index contrast waveguides on silicon-on-insulator (SOI), a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum. The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor (CMOS) process-compatible fabrication technologies, resulting in high-volume production at low cost. On the other hand, explosively growing traffic in the telecom, data center and high-performance computer demands the data flow to have high speed, wide bandwidth, low cost, and high energy-efficiency, as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks. In practical applications, silicon photonics started with optical interconnect transceivers in the data-com first, and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays (OPAs) in light detection and ranging (LiDAR). This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above. CMOS-based silicon photonic platform technologies, applications to optical transceiver in the data-com network, applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.
Opto-Electronic Advances
  • Publication Date: Oct. 28, 2020
  • Vol. 3, Issue 10, 200011-1 (2020)